HU

\&


  • Home

  • Categories

  • About

  • Archives

  • Tags

Navigation

Posted on 2062-01-31   |  

ORDINARY PEOPLE COULD CHOOSE TO BE EXTRAORDINARY.

Github Repos

  • TensorFlow 2.0 for Deep Reinforcement Learning
  • CS234:Reinforcement Learning
  • Word2Vec:Skip-Gram Model
  • Fast-Py3: A Fast Python3 tutoial For Beginners
  • Image Classification using Flowers-dataset

Paper Overview

  • RL_Paper_01 — Self-Regulated Learning - 2018
  • RL_Paper_02 — Deep Q-Network - 2015
  • RL_Paper_03 — Rainbow - 2017

Tutorial

  • Linux服务器上搭建TensorFlow机器学习环境
  • Markdown Syntax

System Design

  • System Design Overview
  • Load Balancer

Basic System Design

Posted on 2020-07-13   |   In Technology   |  

System Design

In a system design interview, you should at least do the following 4 tips:

  • Ask good questions: what feature to work on? how much to scale?
    • To figure out which feature he cares about and which feature he doesn’t, and make sure the finally feature set is small, then go deep into this feature set.
    • How much data you need to store in the database, how many requests per second(QPS) you need to handle, and what kind of latency is expected.
  • Don’t use buzzwords.
  • Clear and organized thinking.
  • Dirve discussions(80-20 rule): you should be talking 80% of the time and the interviewer should be talking 20% of the time.
Read more »

DL_Federated_Learning

Posted on 2020-06-23   |  

小白视角:一文读懂社长的TinyWebServer

Posted on 2020-06-02   |  

小白视角:一文读懂社长的TinyWebServer(Raw_Version)

TL;DR 感谢社长,社长牛逼。

目录

  • 1.什么是Web Server(网络服务器)
  • 2.用户如何与你的Web服务器进行通信
  • 3.Web服务器如何接收客户端发来的HTTP请求报文呢
  • 4.Web服务器如何处理以及响应接收到的HTTP请求报文呢
  • 5.数据库连接池是如何运行的
  • 6.什么是CGI校验
  • 7.生成HTTP响应并返回给用户
  • 8.服务器优化:定时器处理非活动链接
  • 9.服务器优化:日志
  • 10.压测(非常关键)
  • 11.这个服务器的不足在哪(希望大家可以献计献策)
  • 12.如何在此基础添加功能把社长的变成自己的(小声儿bb)
  • 参考资料

预备知识:通读一遍《Linux高性能服务器编程》— 游双著

本文将带你从本人的小白视角,从头到尾彻底理解社长的TinyWebServer项目,明白每个部分都发生了什么,你的服务器程序又是如何处理,如何响应(response)来自客户端的用户请求的(requests)。

Read more »

RL_Importance_Sampling

Posted on 2020-05-26   |   In Math   |  

Importance Sampling

1.What is Importance Sampling

Importance Sampling(IS) is a general technique for estimating properties of a particular distribution $p$, while only having samples generated from a different distribution $q$ than the distribution of interest($p$).

And actually, IS is a variant of Monte Carlo approximation. In Monte Carlo approximation, we were extimating the expected value of a random variable $X$ by this sample mean sum:

But, there is a big assumption that we can efficiently draw samples from the true distribution $p$ of this random variable $X$. What if we can’t do that? Can we use some alternative distribution like $q$ and use the samples drawing from $q$ to correct the fact that we were drawing samples from the wrong distribution or get a better estimation than its true distribution $p$? There is where Importance sampling comes for.

Read more »

RL_OpenAI_Gym_Tutorial

Posted on 2020-05-26   |   In Tools   |  

OpenAI Gym An Introduction

Official Docs: http://gym.openai.com/docs/
Github: https://github.com/openai/gym

Installation

  • Simply install gym using pip3:
    pip3 install gym

  • Full installation containing all environments
    pip3 install gym[all]
    You can ignore the failed building message of mujoco-py, which needs a license.

Read more »

Pek_Auto

Posted on 2019-12-15   |  

My First Kaggle Competition

Peking University/Baidu - Autonomous Driving

  • Baseline: CenterResnet Starter
    第一次接触这个比赛,啥也不会,直接参考(复制)了一位大佬公布的Kernel,直接可以跑通,学习了。整理了一下代码,最终使用ResNet34(Pre-trained)作为Baseline。

CV-HumanActionRec

Posted on 2019-12-03   |  

公开数据集

  • Kinetics-400/600/700
  • UCF-101/50/11
  • HMDB-51

视频行为识别流程

Read more »

CV_Struct2Depth

Posted on 2019-11-18   |  

Learning Google’s Struct2Depth from Scratch.

(An Unsupervised Monocular Depth Estimation Model)
[Paper][Source code]

Read more »

CV_Depth-Estimation

Posted on 2019-10-23   |   In Paper   |  

深度感知

1.双眼视角 2.先验知识 3.光线阴影

Read more »
123
Hugo

Hugo

22 posts
6 categories
5 tags
GitHub LinkedIn Twitter Stackoverflow
© 2020 Hugo
Powered by Hexo
Theme - NexT.Pisces